Για να μελετήσετε το κείμενο σπανίων επιστημονικών και μη βιβλίων, επισκεφθείτε το σύνδεσμο http://anemi.lib.uoc.gr/?lang=el Πρόκειται για τη ψηφιακή βιβλιοθήκη του Πανεπιστημίου της Κρήτης. Αν γράφετε κάποιο βιβλίο ή εργασία, μπορείτε να τα χρησιμοποιήσετε στη βιβλιογραφία σας, αφού τα βιβλία παρουσιάζονται με όλα τους τα στοιχεία, δηλαδή τους πλήρεις τίτλους, τους εκδοτικούς οίκους, τη χρονολογία και τον τόπο έκδοσης, και φυσικά τα ονόματα των συγγραφέων.
Blog Μαθηματικών. Εκπαιδευτική ιστοσελίδα Επισκεφθείτε και την ιστοσελίδα http://blogs.sch.gr/mchalkou-p.
Συνολικές προβολές σελίδας
Τρίτη 19 Μαΐου 2009
Ελεύθερη πρόσβαση σε κείμενα ψηφιακών βιβλίων
Τρίτη 12 Μαΐου 2009
Σάββατο 9 Μαΐου 2009
Όταν τα παιδιά μαθαίνουν "παίζοντας"
Μετά από πρόσκληση της κ. Αλεξάνδρας Κούκιου, Μαθηματικού του 2ου Γυμν. Γαλατσίου, επισκέφθηκα την έκθεση Μαθηματικών στο σχολείο και εντυπωσιάστηκα από τις κατασκευές των μαθητών. Τα παιδιά χρησιμοποιώντας απλά υλικά και μεθόδους κατάφεραν να δείξουν ότι η επίλυση προβλημάτων διαφόρων τομέων των Μαθηματικών μπορεί να προκύψει παίζοντας στην κυριολεξία, δηλ. ζωγραφίζοντας, κάνοντας χαρτοκοπτική, κατασκευάζοντας σπίτια, πλοία, μετρώντας αποστάσεις, εκτελώντας απλές πράξεις, κ. ά. Θερμά συγχαρητήρια στη Μαθηματικό και τους Συναδέλφους της Εκπαιδευτικούς, καθώς και στους Μαθητές και τους Γονείς τους, οι οποίοι για μεγάλο χρονικό διάστημα δούλεψαν με τη συμπαράσταση της Διευθύντριας και του Υποδιευθυντού ενωμένοι, ώστε να παρουσιάσουν ένα δείγμα Σχολείου "ζωντανού", δημιουργικού, όπου η μάθηση συνδυάζεται με ευχαρίστηση.
Τετάρτη 6 Μαΐου 2009
Τρίτη 5 Μαΐου 2009
Δημοσίευση στο περιοδικό του Μαθηματικού Τμήματος του Πανεπιστημίου του Βελιγραδίου "Review of the National Center for Digitization", τεύχος 14(2009)
Για να διαβάσετε το άρθρο κλικ στον τίτλο της ανάρτησης.
Κυριακή 3 Μαΐου 2009
Πανελλήνιες εξετάσεις 2009
Πανελλήνιες εξετάσεις 2009.
Για πληροφορίες σχετικά με την εισαγωγή των υποψηφίων σε ΑΕΙ, ΑΤΕΙ, Στρατιωτικές και Αστυνομικές Σχολές, κλικ στον τίτλο της ανάρτησης
Τετάρτη 8 Απριλίου 2009
Λήξη Διδακτικού έτους 2008-2009
Για να διαβάσετε τί ισχύει σχετικά με τη λήξη του διδακτικού έτους 2008-2009
και τις προαγωγικές και απολυτήριες εξετάσεις των μαθητών των σχολείων της Δευτεροβάθμιας Εκπαίδευσης, κλικ στον τίτλο της ανάρτησης.
και τις προαγωγικές και απολυτήριες εξετάσεις των μαθητών των σχολείων της Δευτεροβάθμιας Εκπαίδευσης, κλικ στον τίτλο της ανάρτησης.
Κυριακή 5 Απριλίου 2009
Θέματα ενδοσχολικών και Πανελληνίων Εξετάσεων για τα ΓΕΛ και τα ΕΠΑΛ
Τα βιβλία "αξιολόγησης του μαθητή" του ΚΕΕ του ΥΠΕΠΘ έχουν γραφεί από ομάδα μαθηματικών Δ.Ε. υπό την εποπτεία Καθηγητών Πανεπιστημίου και Σχ. Συμβούλων. Σε αυτά μπορείτε να βρείτε προσομοιώσεις διαγωνισμάτων , αλλά και εφαρμογές θεωρητικών θεμάτων με τη μορφή ερωτήσεων Σωστού-Λάθους, Πολλαπλών επιλογών, Αντιστοίχισης, Συμπλήρωσης κενού, καθώς και διάφορα είδη ασκήσεων και προβλημάτων, που θα σας βοηθήσουν να δημιουργήσετε τα δικά σας διαγωνίσματα. Ο σύνδεσμος είναι: http://www.kee.gr/html/themata_main.php
Για να δείτε τους συγγραφείς των βιβλίων κλικ στο σύνδεσμο http://www.kee.gr/attachments/file/2364.pdf
Τετάρτη 25 Μαρτίου 2009
Τετάρτη 11 Μαρτίου 2009
Παρασκευή 20 Φεβρουαρίου 2009
Τα θεωρήματα που οδήγησαν μετά από 2300 χρόνια στον τέταρτο ορισμό των κωνικών τομών
Κωνικές τομές. Για να διαβάσετε τα θεωρήματα και τους νέους ορισμούς, κλικ στον τίτλο της ανάρτησης.
Τετάρτη 11 Φεβρουαρίου 2009
Προέλευση και εξέλιξη Μαθηματικών Μεθόδων
Δημοσίευση στο Περιοδικό Review of the National (Serbian) Center for Digitization, τεύχος 12 (2008), σελ. 119-130, ISSN: 1820-0109 του Μαθηματικού Τμήματος του Πανεπιστημίου του Βελιγραδίου.
Κλικ στον τίτλο της ανάρτησης
Κλικ στον τίτλο της ανάρτησης
Δευτέρα 26 Ιανουαρίου 2009
Πέμπτη 22 Ιανουαρίου 2009
Πρόγραμμα PISA- Περιγραφή, παραδείγματα θεμάτων
Με διπλό κλικ στον τίτλο της ανάρτησης θα εμφανιστεί το αρχείο σε μορφή pdf.
Τρίτη 2 Δεκεμβρίου 2008
Διαγωνισμός PISA - Μία πρόκληση για την Ελλάδα
Στους διαγωνισμούς που έγιναν κατά τα έτη 2000, 2003, 2006, η Ελλάδα ελάμβανε μία από τις τελευταίες θέσεις. Είναι λοιπόν σκόπιμο να προβληματιστούμε σχετικά με το τί γίνεται μέσα στην τάξη εδώ στην Ελλάδα σε σύγκριση με τις χώρες που καταλαμβάνουν τις πρώτες θέσεις. Είναι το Αναλυτικό Πρόγραμμα Σπουδών που φταίει;
Μήπως φταίει ο δάσκαλος;
Μήπως φταίνε οι μαθητές;
Τί μπορεί να αλλάξει ή να βελτιωθεί;
Μία πρόκληση για συζήτηση που θα γίνει κατά τη διάρκεια των προγραμματισμένων συναντήσεών μας.
Μήπως φταίει ο δάσκαλος;
Μήπως φταίνε οι μαθητές;
Τί μπορεί να αλλάξει ή να βελτιωθεί;
Μία πρόκληση για συζήτηση που θα γίνει κατά τη διάρκεια των προγραμματισμένων συναντήσεών μας.
Τετάρτη 26 Νοεμβρίου 2008
Η ποιότητα στην Εκπαίδευση
Ολοκληρώθηκε το έργο ¨Αξιολόγηση των ποιοτικών χαρακτηριστικών του συστήματος πρωτοβάθμιας και δευτεροβάθμιας εκπαίδευσης¨ που υλοποίησε το Τμήμα Ποιότητας της Εκπαίδευσης του Παιδαγωγικού Ινστιτούτου κατά τα έτη 2005-2008. Το σχετικό υλικό των αποτελεσμάτων έχει αναρτηθεί στον κόμβο www.pi-schools.gr/Ερευνες
Κυριακή 21 Σεπτεμβρίου 2008
Οδηγίες για τη διδασκαλία των Μαθηματικών στα Γυμνάσια και τα Λύκεια
Οδηγίες για τη διδασκαλία των Μαθηματικών
Για τα Γυμνάσια
Στη Β’ Γυμνασίου ολοκληρώνεται μέχρι 30 Σεπτεμβρίου η διδασκαλία του κεφαλαίου Θετικοί και Αρνητικοί Αριθμοί από το βιβλίο της Α’ τάξης Γυμνασίου. Στη Γ’ Γυμνασίου ολοκληρώνεται μέχρι 30 Σεπτεμβρίου η διδασκαλία του κεφαλαίου Γεωμετρικά Στερεά – Μέτρηση Στερεών, από το βιβλίο της Β’ τάξης Γυμνασίου.
Για τα ΓΕΛ και τα ΕΠΑΛ
Για τα ΓΕΛ σύμφωνα με το τεύχος Οδηγιών του Π.Ι. έκδοσης 2007. Για τα Εσπερινά Λύκεια βλ. στις σελίδες 165–166 του ιδίου τεύχους. Για τα ΕΠΑΛ βλ. στην ιστοσελίδα του Π.Ι.: http://www.pi-schools.gr.
Ειδικότερα για τη Β’ Λυκείου, μέχρι τη 15η Οκτωβρίου, πρέπει να διδαχθούν τα κεφάλαια 6, 7 από το βιβλίο της γεωμετρίας της Α’ Λυκείου, και μέχρι την 30ή Σεπτεμβρίου η τριγωνομετρία από το βιβλίο της άλγεβρας της Α’ Λυκείου.
Για τα Μαθηματικά θετικής και τεχνολογικής κατεύθυνσης (Μαθηματικά Ι, με 5 ώρες διδασκαλίας την εβδομάδα) της Γ’ Λυκείου των ΕΠΑΛ βλ. νέο τεύχος οδηγιών του Π.Ι. σελ. 135.
Για τα Γυμνάσια
Στη Β’ Γυμνασίου ολοκληρώνεται μέχρι 30 Σεπτεμβρίου η διδασκαλία του κεφαλαίου Θετικοί και Αρνητικοί Αριθμοί από το βιβλίο της Α’ τάξης Γυμνασίου. Στη Γ’ Γυμνασίου ολοκληρώνεται μέχρι 30 Σεπτεμβρίου η διδασκαλία του κεφαλαίου Γεωμετρικά Στερεά – Μέτρηση Στερεών, από το βιβλίο της Β’ τάξης Γυμνασίου.
Για τα ΓΕΛ και τα ΕΠΑΛ
Για τα ΓΕΛ σύμφωνα με το τεύχος Οδηγιών του Π.Ι. έκδοσης 2007. Για τα Εσπερινά Λύκεια βλ. στις σελίδες 165–166 του ιδίου τεύχους. Για τα ΕΠΑΛ βλ. στην ιστοσελίδα του Π.Ι.: http://www.pi-schools.gr.
Ειδικότερα για τη Β’ Λυκείου, μέχρι τη 15η Οκτωβρίου, πρέπει να διδαχθούν τα κεφάλαια 6, 7 από το βιβλίο της γεωμετρίας της Α’ Λυκείου, και μέχρι την 30ή Σεπτεμβρίου η τριγωνομετρία από το βιβλίο της άλγεβρας της Α’ Λυκείου.
Για τα Μαθηματικά θετικής και τεχνολογικής κατεύθυνσης (Μαθηματικά Ι, με 5 ώρες διδασκαλίας την εβδομάδα) της Γ’ Λυκείου των ΕΠΑΛ βλ. νέο τεύχος οδηγιών του Π.Ι. σελ. 135.
Πέμπτη 19 Ιουνίου 2008
Ανακοίνωση στο Διεθνές Συνέδριο Ψηφιοποίησης SEEDI στις 14/6/08 στο Βελιγράδι
Dr. Maria D. Chalkou
Ph.D., M.Sc. Dept. of Mathematics, University of Athens.
State School Advisor.
Home address: Vitolion 159- 18546, Piraeus, Greece.
e-mail: maracha@otenet.gr or mchalkou-p@sch.gr
Arithmetical operations, fractions, progressions, linear equations and roots of real numbers, according to the Codex Vindοbonensis phil. gr. 65 of the 15th century.
I will present you some few results of my study on the mathematical content of the anonymous Codex Vindobonensis phil. Graecus 65.This 15th century (1436) Byzantine MS which named Tractatus Mathematicus Vindobonensis Graecus and which I propose to be digitizated, includes the solution of problems of practical arithmetic, algebra, and geometry the roots of which can be traced back to antiquity.
The symbols, which are used in the manuscript are the letters of the Greek alphabet but the calculations are carried out with the new decimal Hindu-Arabic system of numeration. Even though the author is not used to the new symbolisation, it should be emphasised that the use of letters and not numbers does not affect the result, since it concerns a system in which the arithmetical value of a letter depends upon its place [62]. Thus, the author insisted on preservation of the old symbols, whilst other earlier scholars, such as Planudes (1255-1305 A.D.) in Byzantium and Fibonacci (born in 1170), who introduced the new arithmetical symbols in Western Europe, were familiar with the new system. However, the use of the new numbers was not generalized during the Byzantine period because their use created various problems in commercial mathematics.
In the codex the term “milliouni” is mentioned which means a million. According to D. E. Smith, this term first appeared in 1478 in the Italian manuscript “Arithmetic of Treviso”. We therefore have an important indication that the term “milliouni” did not first appear in the Italian “Arithmetic of Treviso” but in Codex 65, which appears to date back to 1436 A.D.
In 1494 Luca Pacioli issued the “Summa” which was the first mathematical encyclopaedia of the Renaissance. The first part includes Arithmetic and Algebra and the second part Geometry, exactly as in our MS. Pacioli used the Hindu numerals [68] in “Suma” and calls the “crosswise method” of multiplication “crocetta” (little cross). For example in multiplication of 12 with 13, initially the 2 was multiplied with 3 to make 6. Further, the “crosswise” digits of 12 and 13 were multiplied as in the codex 65, and the results are added, so we have 5. The 5 represents the decades and the 6 the units. Further multiplication of the first digits of the numbers 12 and 13 arrives at 1. The 1 represents the hundreds and thus the final result is 156. This procedure is found in the codex 65 too.
In the same work, Pacioli who taught arithmetic and commercial algebra mentions to the method of “four-sided” in multiplication of two 3-digit numbers, in which the number which multiplies is made descending downwards from the number which must be multiplied. However this is exactly how multiplication of three digit numbers is done in Codex 65, which is older than the “Suma” [41]. The similarities of this Codex in relation with the “Suma” and with the “Arithmetic of Treviso” do not stop here since in the second one, the division is done in a similar way to that of Codex 65 [42] .
Of course, the interactions between the Byzantines and Western are undoubted since Planudes makes division using the Fibonacci method, which is also identical with the method used in our MS.
To test the multiplication the anonymous author requires the remainder of the division of 15 by 7, which is 1. Because the remainder of the division of 6 by 7 is 6, multiplication of 1 with 6 placing the remainder in a circle. Finally the remainder is found in division of 90 by 7, which is 6, to be compared with the number, which has been placed in a circle. Since the two results are the same, then the multiplication is correct.
The Hindu used that method, by dividing by 9 instead of 7. Al Khwarizmi (c. 825 A. D.) was familiar with this as well as Al Karkhi (c. 1020 A.D.), who are even more ancient than the actual date of Codex 65. We also know that the Arabs had adopted this using of course the number 7, as well as 8, 9 and 11, but the check by 7 according to Fibonacci, Planudes and others ensures a very little possibility of error [44]. The same opinion was expressed by the author of our MS.
Although this procedure is not in use any more, I found it in a 20th century’s book with title ‘‘A detailed description of Theoretical Arithmetic for Practical Schools’’ of Secondary Education written by N. Nikolaou, which taught in the fifties [36]. This does not mean of course, that the aforementioned method was taught up to that time continuously at all schools. Immediately after the fall of Constantinople, the lower schools taught the ‘‘Arithmetic’’ written by Emmanuel Glyzonios for more than two and a half centuries. In this Arithmetic, the check of multiplication was done by the crosswise method [16].
In the MS the way of defining a fraction is based on the condition that the numerator must be smaller than the denominator. The same notion is extended, within the same Codex to all type of fractions. The most unusual thing is that in the Arithmetic of Pagani written in 1591 A. D. the numerator is less than the denominator, whilst all the other type of fractions is considered according to some researchers to be a subsequent discovery [45].
In Codex 65 the operations between fractions are carried out using methods similar to those of today. This is another indication of the unbroken tradition of mathematical methods until today [26].
In another chapter the author deals with problems, which are easily solved today by using linear equations, despite the fact that he himself however solves them with practical arithmetic. As is well known, the problems of equations of first order have there roots in antiquity [47]. It is worthwhile noting, that these problems were found in Arithmetic books which were considered more advanced than the usual ones [48]. This indicates that Codex 65 was probably a worthy Arithmetic of its time.
A customary method used at that time was the one of “false assumption” which leads the author, as is to be expected, to a false conclusion result, so he reaches the correct answer by applying the qualities of proportions [69].
The method of “false assumption” was particularly beloved by Diophantus, and was taught at schools in Europe and America up to the 19th century. It seems that it was very well known in Medeaval times since Fibonacci related to it in his works [49] and used it often in problems [64].
Another type of problem relates to movements for meeting or removal of ships or persons.
Metrodoros is considered as the main creator of these problems, which belong to recreational mathematics, and, as Smith asserts [51], they first appeared in the West in 1483 and were found in the manuscript ‘‘Suma’’ of Luca Pacioli, written in 1494. If Smith’s assertions are correct, it is very likely that Codex 65 is the source from which Pacioli drew subjects, when he wrote his Suma.. The question therefore arises, concerning the relationship of Codex 65 with the other two manuscripts, namely the Suma and the Arithmetic of Treviso.
Of course, the Suma was not known for new discoveries in mathematics. However it gives us information about the mathematical knowledge up to its time and is considered that it laid the foundations for the further development of algebra in the 16th century. The Arithmetic of Treviso like the codex 65 contained problems of the four operations, problems on coins’ conversion, progressions, interests, undetermined analysis, equalization as well as assignation of the perfect number. It also contained geometry problems.
On the other hand it is certain that many Latin scholars who knew ancient Greek read Greek manuscripts and were influenced by them.
Thus in this case in order to reach certain conclusions, a comparison between the contents of those Italian works and that of Codex 65 is required.
In our codex the material of algebra includes the roots of real numbers, equations up to fourth level, and the system of equation up to second level.
In accordance with the methods of calculation of the square root it appears that the root of 30 is equal to 5 5/11 (chapter 123, f. 64v). The preferred method is the same as that of Omar Khayyam. If the calculation of the root of 30 is done with the method used by Planudes, which is based on the formula of the Hero of Alexandria [23], we will have as result 5+5/10 and not 5+5/11.
From a comparison between the method of the author of Codex 65 and that of Rabdas, at first glance it appears that the latter used Hero’s formula, and that also he further considered that if A had been the higher approximation of the root, then the A1=30/A was the less approximation, and the rate (1/2) (A +A 1) was considered from Rabdas as the better of these [24].
According to this formula the better approximation would be the number 5 21/ 44.
We observe that, when in the codex 65 is given approximately the root of 30, then the number 5 21/44 is found as the second approximation of this root (chapter 123, f. 64v, 65r), which agrees with the second approximation which is found by Rabdas, although their values for the first approximation do not agree; in the codex 65 is found the number 5 5/11 while Rabdas gives 5 5/10.
The methods of calculating a square root, which I referred to above, seem to have been abandoned within the years, and finally in the year 1494 Luca Pacioli gives a method, similar to the this one which was taught at schools of secondary education some years ago in Greece. Later, in 1546, Cataneo reaches more this method [55], which reminds the art of division and raises particular difficulties, for the students, in memorizing.
I have presented to you some few results of my study on the mathematical content of the published part (f. 11r-126r) of the Codex Vind. Phil. gr. 65 (Tractatus Mathematicus Vindobonensis Graecus or TractMathVindGr). This 15th century (1436) Byzantine MS includes as I have said the solution of problems of practical arithmetic, algebra and geometry, the roots of which can be traced back to antiquity and their comparison with modern mathematical solutions reveals –apart from some differences- many identities and similarities showing the unbroken continuity of mathematical tradition through the centuries. Moreover, my research has revealed so far some important results according to which we are probably in the position to give to the TractMathVindGr the title of the Byzantine encyclopaedia of Mathematics.
www.ncd.matf.bg.ac.yu
Ph.D., M.Sc. Dept. of Mathematics, University of Athens.
State School Advisor.
Home address: Vitolion 159- 18546, Piraeus, Greece.
e-mail: maracha@otenet.gr or mchalkou-p@sch.gr
Arithmetical operations, fractions, progressions, linear equations and roots of real numbers, according to the Codex Vindοbonensis phil. gr. 65 of the 15th century.
I will present you some few results of my study on the mathematical content of the anonymous Codex Vindobonensis phil. Graecus 65.This 15th century (1436) Byzantine MS which named Tractatus Mathematicus Vindobonensis Graecus and which I propose to be digitizated, includes the solution of problems of practical arithmetic, algebra, and geometry the roots of which can be traced back to antiquity.
The symbols, which are used in the manuscript are the letters of the Greek alphabet but the calculations are carried out with the new decimal Hindu-Arabic system of numeration. Even though the author is not used to the new symbolisation, it should be emphasised that the use of letters and not numbers does not affect the result, since it concerns a system in which the arithmetical value of a letter depends upon its place [62]. Thus, the author insisted on preservation of the old symbols, whilst other earlier scholars, such as Planudes (1255-1305 A.D.) in Byzantium and Fibonacci (born in 1170), who introduced the new arithmetical symbols in Western Europe, were familiar with the new system. However, the use of the new numbers was not generalized during the Byzantine period because their use created various problems in commercial mathematics.
In the codex the term “milliouni” is mentioned which means a million. According to D. E. Smith, this term first appeared in 1478 in the Italian manuscript “Arithmetic of Treviso”. We therefore have an important indication that the term “milliouni” did not first appear in the Italian “Arithmetic of Treviso” but in Codex 65, which appears to date back to 1436 A.D.
In 1494 Luca Pacioli issued the “Summa” which was the first mathematical encyclopaedia of the Renaissance. The first part includes Arithmetic and Algebra and the second part Geometry, exactly as in our MS. Pacioli used the Hindu numerals [68] in “Suma” and calls the “crosswise method” of multiplication “crocetta” (little cross). For example in multiplication of 12 with 13, initially the 2 was multiplied with 3 to make 6. Further, the “crosswise” digits of 12 and 13 were multiplied as in the codex 65, and the results are added, so we have 5. The 5 represents the decades and the 6 the units. Further multiplication of the first digits of the numbers 12 and 13 arrives at 1. The 1 represents the hundreds and thus the final result is 156. This procedure is found in the codex 65 too.
In the same work, Pacioli who taught arithmetic and commercial algebra mentions to the method of “four-sided” in multiplication of two 3-digit numbers, in which the number which multiplies is made descending downwards from the number which must be multiplied. However this is exactly how multiplication of three digit numbers is done in Codex 65, which is older than the “Suma” [41]. The similarities of this Codex in relation with the “Suma” and with the “Arithmetic of Treviso” do not stop here since in the second one, the division is done in a similar way to that of Codex 65 [42] .
Of course, the interactions between the Byzantines and Western are undoubted since Planudes makes division using the Fibonacci method, which is also identical with the method used in our MS.
To test the multiplication the anonymous author requires the remainder of the division of 15 by 7, which is 1. Because the remainder of the division of 6 by 7 is 6, multiplication of 1 with 6 placing the remainder in a circle. Finally the remainder is found in division of 90 by 7, which is 6, to be compared with the number, which has been placed in a circle. Since the two results are the same, then the multiplication is correct.
The Hindu used that method, by dividing by 9 instead of 7. Al Khwarizmi (c. 825 A. D.) was familiar with this as well as Al Karkhi (c. 1020 A.D.), who are even more ancient than the actual date of Codex 65. We also know that the Arabs had adopted this using of course the number 7, as well as 8, 9 and 11, but the check by 7 according to Fibonacci, Planudes and others ensures a very little possibility of error [44]. The same opinion was expressed by the author of our MS.
Although this procedure is not in use any more, I found it in a 20th century’s book with title ‘‘A detailed description of Theoretical Arithmetic for Practical Schools’’ of Secondary Education written by N. Nikolaou, which taught in the fifties [36]. This does not mean of course, that the aforementioned method was taught up to that time continuously at all schools. Immediately after the fall of Constantinople, the lower schools taught the ‘‘Arithmetic’’ written by Emmanuel Glyzonios for more than two and a half centuries. In this Arithmetic, the check of multiplication was done by the crosswise method [16].
In the MS the way of defining a fraction is based on the condition that the numerator must be smaller than the denominator. The same notion is extended, within the same Codex to all type of fractions. The most unusual thing is that in the Arithmetic of Pagani written in 1591 A. D. the numerator is less than the denominator, whilst all the other type of fractions is considered according to some researchers to be a subsequent discovery [45].
In Codex 65 the operations between fractions are carried out using methods similar to those of today. This is another indication of the unbroken tradition of mathematical methods until today [26].
In another chapter the author deals with problems, which are easily solved today by using linear equations, despite the fact that he himself however solves them with practical arithmetic. As is well known, the problems of equations of first order have there roots in antiquity [47]. It is worthwhile noting, that these problems were found in Arithmetic books which were considered more advanced than the usual ones [48]. This indicates that Codex 65 was probably a worthy Arithmetic of its time.
A customary method used at that time was the one of “false assumption” which leads the author, as is to be expected, to a false conclusion result, so he reaches the correct answer by applying the qualities of proportions [69].
The method of “false assumption” was particularly beloved by Diophantus, and was taught at schools in Europe and America up to the 19th century. It seems that it was very well known in Medeaval times since Fibonacci related to it in his works [49] and used it often in problems [64].
Another type of problem relates to movements for meeting or removal of ships or persons.
Metrodoros is considered as the main creator of these problems, which belong to recreational mathematics, and, as Smith asserts [51], they first appeared in the West in 1483 and were found in the manuscript ‘‘Suma’’ of Luca Pacioli, written in 1494. If Smith’s assertions are correct, it is very likely that Codex 65 is the source from which Pacioli drew subjects, when he wrote his Suma.. The question therefore arises, concerning the relationship of Codex 65 with the other two manuscripts, namely the Suma and the Arithmetic of Treviso.
Of course, the Suma was not known for new discoveries in mathematics. However it gives us information about the mathematical knowledge up to its time and is considered that it laid the foundations for the further development of algebra in the 16th century. The Arithmetic of Treviso like the codex 65 contained problems of the four operations, problems on coins’ conversion, progressions, interests, undetermined analysis, equalization as well as assignation of the perfect number. It also contained geometry problems.
On the other hand it is certain that many Latin scholars who knew ancient Greek read Greek manuscripts and were influenced by them.
Thus in this case in order to reach certain conclusions, a comparison between the contents of those Italian works and that of Codex 65 is required.
In our codex the material of algebra includes the roots of real numbers, equations up to fourth level, and the system of equation up to second level.
In accordance with the methods of calculation of the square root it appears that the root of 30 is equal to 5 5/11 (chapter 123, f. 64v). The preferred method is the same as that of Omar Khayyam. If the calculation of the root of 30 is done with the method used by Planudes, which is based on the formula of the Hero of Alexandria [23], we will have as result 5+5/10 and not 5+5/11.
From a comparison between the method of the author of Codex 65 and that of Rabdas, at first glance it appears that the latter used Hero’s formula, and that also he further considered that if A had been the higher approximation of the root, then the A1=30/A was the less approximation, and the rate (1/2) (A +A 1) was considered from Rabdas as the better of these [24].
According to this formula the better approximation would be the number 5 21/ 44.
We observe that, when in the codex 65 is given approximately the root of 30, then the number 5 21/44 is found as the second approximation of this root (chapter 123, f. 64v, 65r), which agrees with the second approximation which is found by Rabdas, although their values for the first approximation do not agree; in the codex 65 is found the number 5 5/11 while Rabdas gives 5 5/10.
The methods of calculating a square root, which I referred to above, seem to have been abandoned within the years, and finally in the year 1494 Luca Pacioli gives a method, similar to the this one which was taught at schools of secondary education some years ago in Greece. Later, in 1546, Cataneo reaches more this method [55], which reminds the art of division and raises particular difficulties, for the students, in memorizing.
I have presented to you some few results of my study on the mathematical content of the published part (f. 11r-126r) of the Codex Vind. Phil. gr. 65 (Tractatus Mathematicus Vindobonensis Graecus or TractMathVindGr). This 15th century (1436) Byzantine MS includes as I have said the solution of problems of practical arithmetic, algebra and geometry, the roots of which can be traced back to antiquity and their comparison with modern mathematical solutions reveals –apart from some differences- many identities and similarities showing the unbroken continuity of mathematical tradition through the centuries. Moreover, my research has revealed so far some important results according to which we are probably in the position to give to the TractMathVindGr the title of the Byzantine encyclopaedia of Mathematics.
www.ncd.matf.bg.ac.yu
Παρασκευή 4 Απριλίου 2008
Οι τρεις πρώτοι ορισμοί των κωνικών τομών
Οι κωνικές τομές προκύπτουν από τομή κώνου και επιπέδου. Είναι γνωστό ότι μέχρι το 1997 που προέκυψε ο 4ος ορισμός των κωνικών τομών (βλέπε στις αναρτήσεις του Οκτωβρίου), είχαμε στη διάθεσή μας τρείς ορισμούς αυτών, οι οποίοι είναι οι εξής:
1ος ορισμός
Θεωρούμε ορθό κώνο με κορυφή το σημείο Κ και μία διάμετρο βάσης αυτού έστω την ΑΒ. Συμβολίζουμε με ω τη γωνία που σχηματίζεται από την ΚΒ και την προέκταση της ΚΑ. Συμβολίζουμε με ΜΝ (άξονας συμμετρίας της κωνικής ευρισκόμενος στο επίπεδο ΚΑΒ) την τομή του επιπέδου ΚΑΒ και της κωνικής τομής. Συμβολίζουμε με α τη γωνία που σχηματίζεται από τη ΜΝ και την ΚΑ.
α) Αν η α είναι μικρότερη από την ω, τότε η κωνική τομή είναι έλλειψη. Στην ειδική περίπτωση που α=ω/2 η έλλειψη γίνεται κύκλος.
β) Αν η α είναι ίση με την ω, παραβολή.
γ) Αν η α είναι μεγαλύτερη από την ω, υπερβολή. Επειδή δε ο κώνος θεωρείται δίχωνος, προκύπτει ότι η υπερβολή έχει δύο σκέλη.
2ος ορισμός
α) Έλλειψη ονομάζουμε το γεωμετρικό τόπο των σημείων του επιπέδου, των οποίων το άθροισμα των αποστάσεων (απόλυτη τιμή) από 2 δοθέντα σημεία του ιδίου επιπέδου είναι σταθερό.
β) Παραβολή ονομάζουμε το γεωμετρικό τόπο των σημείων του επιπέδου που απέχουν το ίδιο από δοθέν σημείο και δοθείσα ευθεία αυτού. Το σημείο καλείται εστία και η ευθεία διευθετούσα.
γ) Υπερβολή ονομάζουμε το γεωμετρικό τόπο των σημείων του επιπέδου, των οποίων η διαφορά των αποστάσεων (απόλυτη τιμή) από 2 δοθέντα σημεία του ιδίου επιπέδου είναι σταθερή.
3ος ορισμός
Ο τρίτος ορισμός σχετίζεται με την εκκεντρότητα.
Έχει δειχθεί ότι ο λόγος των αποστάσεων τυχόντος σημείου της κωνικής από σταθερό σημείο και σταθερή ευθεία είναι σταθερός, συμβολίζεται με e και ονομάζεται εκκεντρότητα.
α) Αν η εκκεντρότητα είναι μικρότερη από τη μονάδα, τότε η κωνική ονομάζεται έλλειψη.
β) Αν η εκκεντρότητα είναι ίση με τη μονάδα, παραβολή.
γ) Αν η εκκεντρότητα είναι μεγαλύτερη από τη μονάδα, υπερβολή.
Εγγραφή σε:
Σχόλια (Atom)