Συνολικές προβολές σελίδας

Σάββατο 24 Νοεμβρίου 2007

Μαθηματική μέθοδος, ή μέθοδος αύξησης του κέρδους;

Ὑπολογισμὸς ὄγκου δοχείου σχήματος "βαρελιοῦ".

Μαθηματικὴ μέθοδος, ἢ μέθοδος αὔξησης τοῦ κέρδους;




Εἶναι γνωστὸ ὅτι ὁ Ἀρχιμήδης εἰσάγοντας τὴ μέθοδο τῆς ἐξάντλησης ὑπολόγισε ἐμβαδὰ καὶ ὄγκους, τὰ ὁποῖα σήμερα ἐκφράζονται μέσω ὁλοκληρωμάτων[1]. Βρῆκε δηλαδὴ μέθοδο, μὲ τὴν ὁποία ὑπολόγισε ἐμβαδὰ καὶ ὄγκους στερεῶν κάθε μορφῆς, καὶ οἱ ἰδέες του ἀποτέλεσαν τὴ βάση τοῦ ὁλοκληρωτικοῦ λογισμοῦ[2] τὸν 17ο αἰ. Ἐπίσης ὁ Ἥρων ὁ Ἀλεξανδρέας, γιὰ νὰ ὑπολογίσει τὸν ὄγκο τοῦ κώνου χρησιμοποιοῦσε μία προσεγγιστικὴ μέθοδο, σύμφωνα μὲ τὴν ὁποία ὑπολόγιζε τὸ γινόμενο τοῦ ὕψους καὶ τοῦ ἐμβαδοῦ τοῦ κύκλου τοῦ ἀγομένου καθέτως πρὸς τὸ ὕψος καὶ στὸ μέσον αὐτοῦ. Γιὰ τὸν ὑπολογισμὸ τῶν ὄγκων τῶν στερεῶν σχήματος ἀγγείου γενικώτερα, εἶχαν γίνει καὶ ἄλλες ἀπόπειρες, ὄχι πάντοτε ἐπιτυχεῖς. Μάλιστα σὲ ἑλληνικὸ πάπυρο τοῦ 4ου αἰ. μ.Χ. κάποιος μαθητὴς ἔχει ὑπολογίσει λανθασμένα τὸν ὄγκο ἀγγείου μὲ ἄνισες κυκλικὲς βάσεις[3]. Στὸν Μεσαίωνα πάλι, σχετικὰ μὲ τὴν ὁλοκλήρωση, ὑπῆρχε ἡ ἰδέα τοῦ χωρισμοῦ ἑνὸς ἐπιπέδου σχήματος σὲ ἄπειρα παραλληλόγραμμα, ἡ ὁποία ὅμως οὐδέποτε ἔγινε θεωρία. Τὸ 1360 ὁ Ὄρεσμος (Oresme 1320-1382)[4], μὲ τὴ μέθοδο τῶν μεγίστων καὶ ἐλαχίστων τιμῶν (Πλάτη καὶ μήκη γεωγραφικὰ) κατόρθωσε νὰ ὑπολογίσει ἐμβαδὰ περιοχῶν οἱ ὁποῖες βρίσκονταν ἀνάμεσα σὲ καμπύλες καὶ εὐθεῖες[5]. Ἀργότερα (1609) ὁ Κέπλερ ἔφθασε σὲ κάποιο χονδροειδὲς εἶδος ὁλοκλήρωσης, καὶ θεώρησε ὅτι κάθε στερεὸ ἀποτελεῖται ἀπὸ ἕνα ἀπεριόριστο πλῆθος κώνων ἢ λεπτῶν δίσκων, ἡ ἄθροιση τῶν ὁποίων ἔγινε τὸ πρόβλημα τῆς μετέπειτα ὁλοκλήρωσης.

Ἀξίζει νὰ ἀναφερθεῖ μία μέθοδος ὑπολογισμοῦ δοχείου σχήματος βαρελιοῦ, ἡ ὁποία βρέθηκε σὲ Ἑλληνικὸ χειρόγραφο ποὺ χρονολογεῖται πιθανότατα στὸ 1436 μ.Χ. Τὸ συγκεκριμένο δοχεῖο ἔχει κυκλικὲς βάσεις περιμέτρου 10 μονάδων. Ἡ περίμετρος τοῦ κύκλου (μεγίστου) ποὺ ἰσαπέχει ἀπὸ τὶς βάσεις εἶναι 22 μονάδες, καὶ τὸ ὕψος τοῦ βαρελιοῦ εἶναι 10 μονάδες.

Στὸ χειρόγραφο αὐτό, ἔχουν ὑπολογίσει τὸν μέσο ὅρο τῶν περιμέτρων τῶν 2 κύκλων, δηλαδὴ τὸν μέσον ὅρον τοῦ 22 καὶ τοῦ 10, ὁ ὁποῖος εἶναι ἴσος μὲ 16. Κατόπιν ἔχουν θεωρήσει ἕναν νέο κύκλο μὲ περίμετρο ἴση μὲ 16 καὶ, ἀπὸ τὴν περίμετρο αὐτοῦ τοῦ νέου κύκλου ἔχουν ὑπολογίσει τὸ ἐμβαδὸν του ἀκολουθώντας τὴν γνωστὴ διαδικασία (θεωροῦσαν π=22/7). Στὴ συνέχεια πολλαπλασιάζουν τὸ ἐμβαδὸν τοῦ τελευταίου κύκλου μὲ τὸ ὕψος τοῦ δοχείου καὶ βρίσκουν ὅτι ὁ ζητούμενος ὄγκος εἶναι κατὰ προσέγγιση ἴσος μὲ 204. Θεωροῦν δηλαδὴ, ὅτι τὸ ἀρχικὸ δοχεῖο ἔχει τὸν ἴδιο ὄγκο μὲ ἕνα δοχεῖο κυλινδρικοῦ σχήματος ἰδίου ὕψους μὲ περίμετρο βάσεως ἴση μὲ τὸν μέσον ὅρον τῶν περιμέτρων τοῦ μεγίστου καὶ τοῦ ἐλαχίστου κύκλου τοῦ ἀρχικοῦ δοχείου.

Ἀλλὰ καὶ μὲ μία πρακτικὴ μέθοδο, τὴν ὁποία διαθέτουμε σήμερα[6] γιὰ τὸν ὑπολογισμὸ τοῦ ὄγκου Ο τέτοιου εἴδους σχημάτων, ἰσχύει ὅτι

Ο(υ₁/6)(S₀+4S₁+S₂), ὅπου

υ₁= ἡ ἀπόσταση τῆς κάτω καὶ ἄνω τομῆς,

S₀= τὸ ἐμβαδὸν τῆς κάτω τομῆς,

S₁= τὸ ἐμβαδὸν τῆς μεσαίας τομῆς, καὶ

S₂= τὸ ἐμβαδὸν τῆς ἄνω τομῆς. Ἑπομένως ἔχουμε

Ο=(10/6)(50/π+484/π)=890/π283,4>204

Ἂν ὁ συγγραφέας τοῦ χειρογράφου ποὺ ἀνέφερα εἶχε ἐπιρρεασθεῖ ἀπὸ τὸν Ἥρωνα τὸν Ἀλεξανδρέα, θὰ ἀκολουθοῦσε τὴν ἑξῆς πορεία[7]:

Θὰ ὕψωνε τὶς διαμέτρους τοῦ μεγίστου καὶ ἐλαχίστου κύκλου στὸ τετράγωνο, τὶς ὁποῖες κατόπιν θὰ προσέθετε, ὁπότε θὰ εἶχε:

(100/π²)+(484/π²)=584/π².

Στὴ συνέχεια θὰ ἐκτελοῦσε τὶς ἑξῆς πράξεις:

(10/π)(22/π)=220/π²

(584+220)/π²=804/π²

(804/π²)/3=268/π²

(268/π²)5=1340/π²

(1340/π²)2=2680/π²=2680/(22/7)²271,3 (Ὁ Ἥρων ὅταν ἐπρόκειτο γιὰ προβλήματα τέτοιου εἴδους ἔθετε π=22/7).

Παρατηροῦμε, ὅτι ἡ τιμὴ αὐτὴ συγκρινόμενη μὲ τὴν τιμὴ 204 τοῦ ἑλληνικοῦ χειρογράφου εἶναι πολὺ πλησιέστερη αὐτῆς ποὺ βρέθηκε μὲ τὴ σύγχρονη πρακτικὴ μέθοδο. Ἀναρωτιόμαστε λοιπόν, μήπως πρόκειται γιὰ συνηθισμένο λάθος ἐκείνης τῆς ἐποχῆς, ἢ μήπως ἡ μεθοδος τοῦ συγγραφέα ἀποσκοποῦσε στὸ κέρδος τῶν ἐμπόρων, ὡς μεσαζόντων μεταξὺ παραγωγῶν καὶ καταναλωτῶν.



[1] Γιὰ τὴ χρησιμοποίηση ἀπὸ τὸν Ἀρχιμήδη τῶν ἀρχῶν τοῦ διαφορικοῦ καὶ ὁλοκληρωτικοῦ Λογισμοῦ βλ. H. G. Zeuthen, Die Lehre von den Kegelschnitten im Altertum, ed. Fischer-Benzon, Kopenhagen 1886, repr. Hildesheim 1996, σελ. 440-451. Smith, Hist. Math., τόμ. II, σελ. 684.

Ἀρχιμήδης εἶχε εἰσαγάγει καὶ χρησιμοποιοῦσε τὰ ἀθροίσματα, ὅπως στοὺς νεωτέρους χρόνους ὁ Riemann, καὶ εἶχε βρεῖ μέθοδο ἀναγωγῆς τῶν προβλημάτων μεγίστου καὶ ἐλαχίστου σὲ προβλήματα ἐφαπτομένων. Βλ. I. G. Bachmakova, "Οἱ μέθοδοι διαφόρισης τοῦ Ἀρχιμήδη", AHES, N2, 1964, τόμ. ΙΙ, σελ. 87-107.

[2] Ἀκαδ. Ἐγκυκλ. Ἀκαδ. Ἐπιστημῶν τῆς ΕΣΣΔ, ἐκδ. Γιαννίκος, Ἀθήνα 1975-76, τόμ. ΙΙ, "Διάσημοι μαθηματικοί", σελ. 478.

[3] Smith, Hist. Math., τόμ. ΙΙ, σελ. 294.

[4] Βλ. M. Clagett, "Oresme Nicole", DSB, τόμ. X, σελ. 223-230.

[5] Βλ. Smith, Hist. Math., τόμ. II, σελ. 684. V. M. Tikhomirov, Ἱστορίες γιὰ μέγιστα καὶ ἐλάχιστα, ἐκδ. Κάτοπτρο, Ἀθήνα 1999, σελ. 52-67. Struik, Hist. Math., σελ. 128.

[6] Ἀκαδ. Ἐγκυκλοπαίδεια, Ἀκαδ. Ἐπιστημῶν ΕΣΣΔ, ἐκδ. Γιαννίκος, Ἀθήνα 1975-76, τόμ. ΙΙ, "Ὁλοκλήρωμα καὶ παράγωγος", σελ. 366.

[7] Heron, Stereom., τόμ. V, σελ. 102.

Κυριακή 18 Νοεμβρίου 2007

Οι μεθοδοι επίλυσης Εξισώσεων στην Ιστορία των Μαθηματικών

Μία μικρὴ ἱστορία γιὰ τὶς Εξισώσεις μὲ ἀφορμὴ τὴ μελέτη τοῦ ἔργου - πηγή ποὺ εἶναι ὁ κώδικας 65, ἕνα ἑλληνικὸ μαθηματικὸ χειρόγραφο τοῦ 15ου αἰώνα




Ἡ μεθοδολογία τῆς λύσεως τῶν ἐξισώσεων πρώτου καὶ δευτέρου βαθμοῦ ἦταν γνωστὴ ἀπὸ τὴν ἀρχαιότητα[1]. Ὁ Διόφαντος μάλιστα τὶς ἐχώριζε σὲ κατηγορίες, καὶ χρησιμοποιοῦσε μόνο τὴ θετικὴ ρίζα[2] χωρὶς ὅμως αὐτὸ νὰ σημαίνει ὅτι ἀγνοοῦσε τὴν ὕπαρξη τῆς ἀρνητικῆς. Βέβαια καὶ σὲ πολὺ μεταγενέστερα χειρόγραφα δὲν γινόταν λόγος γιὰ ἀρνητικὲς ρίζες.
Κατὰ τὸν 15ον αἰ. δέ, χρησιμοποιοῦσαν τὴν ἑξῆς ὁρολογία:
"Ἀριθμὸς", γιὰ κάθε πραγματικὸ ἀριθμό.
"Πρᾶγμα", γιὰ τὸν ἄγνωστο χ.
"Τζένσο"[3], γιὰ τὸ χ².
"Κοῦβο", γιὰ τὸ χ³.
"Κάδρο", γιὰ τὸ χ⁴.
Ὁ Φιμπονάτσι (1225 μ.Χ.) χρησιμοποιοῦσε τοὺς ἴδιους ὅρους γιὰ νὰ ὀνομάσει τὶς ἀνωτέρω παραστάσεις, ἐκτὸς ἀπὸ τὶς παραστάσεις χ² καὶ χ⁴ τὶς ὁποῖες ὀνόμαζε, τὴ μὲν πρώτη "quadratus" ἢ "census" ἢ "avere", καὶ τὴ δεύτερη "census"[4]. Ὁ Φιμπονάτσι εἶχε ἐπιρρεασθεῖ ἀπὸ τοὺς Ἀλ Χουαρίζμι καὶ Ἀλ Κάρα. Ὁ Ἀλ Χουαρίζμι ὅμως, ἐνῶ ὀνομάζει τὸν ἄγνωστο χ "πρᾶγμα", τὸ χ² τὸ καλεῖ "τετράγωνο" καὶ ὄχι τζένσο[5].
Στὴ Δύση ὁ Jordanus Nemorarius χρησιμοποιοῦσε τὴν ἴδια ὁρολογία[6] μὲ τὸν Φιμπονάτσι, καὶ ὁ Luca Pacioli τὸ 1494 χρησιμοποιεῖ τὴν ἴδια μεθοδολογία ἐπίλυσης[7] πρωτοβάθμιων καὶ δευτεροβάθμιων ἐξισώσεων μὲ αὐτὴν τοῦ συγγραφέα τοῦ χειρογράφου μας. Τὴν ἴδια μεθοδολογία ἐπίλυσης χρησιμοποιοῦσε ἀπὸ παλαιότερα καὶ ὁ Omar Khayyam.
Διαπιστώνουμε λοιπόν, ὅτι μπορεῖ μὲν νὰ ὑπάρχουν ἄμεσες ἐπιρροὲς ἀπὸ τὴ Δύση, ὅμως τὸν κυριότερο ρόλο διαδραματίζουν οἱ ἀλληλεπιδράσεις τῶν ἐπιστημονικῶν ἰδεῶν Ἀνατολῆς καὶ Δύσης.
Ὅσον ἀφορᾶ στὶς τριτοβάθμιες καὶ τεταρτοβάθμιες ἐξισώσεις, ὁ συγγραφέας τοῦ κώδικα 65 δίνει μεθοδολογίες λύσης οἱ ὁποῖες εἶναι λανθασμένες. Τὸ γεγονὸς αὐτὸ δὲν πρέπει νὰ μᾶς ἐκπλήσσει, διότι τὴν ἐποχὴ ἐκείνη γίνονταν ἀποτυχημένες ἀπόπειρες ἐξεύρεσης μεθοδολογίας γενικῆς λύσης γιὰ τὶς ἐξισώσεις βαθμοῦ ἀνωτέρου τοῦ δευτέρου. Στὸ ἔργο τοῦ Διόφαντου ὑπάρχει μόνο μία ἐξίσωση 3ου βαθμοῦ. Πρόκειται γιὰ τὴν ἐξίσωση χ²+2χ+3=χ³+3χ-3χ²-1, ἡ ὁποία λύνεται μὲ παραγοντοποίηση, ὁπότε ἔχουμε:
(χ-4)(χ²+1)=0, καὶ τελικὰ χ=4[8]. Τὸν 6ο αἰ. ὁ Al-Karagī περιέλαβε σὲ ἔργο του ἐξισώσεις ἀνωτέρου βαθμοῦ[9], ἐνῶ πολὺ ἀργότερα ὁ Omar Khayyam εἶχε ἀσχοληθεῖ μὲ τὶς ἐξισώσεις 3ου καὶ 4ου βαθμοῦ, χωρίς ἀποτέλεσμα[10]. Δείγματα ἐσφαλμένων λύσεων[11] τῆς τριτοβάθμιας ἐξίσωσης ἔχουμε
α) ἀπὸ τὸν Rudolff τὸ 1525 μ.Χ. γιὰ τὴν ἐξίσωση χ³=10χ²+20χ+48, τὴν ὁποία ἔλυνε ὡς ἑξῆς:
χ³+8=10χ²+20χ+56, ὁπότε
χ²-2χ+4=10χ+56/(χ+2), συνεπῶς
χ²-2χ=10χ, καὶ 4=56/(χ+2), δηλαδὴ
χ=12, καὶ
β) ἀπὸ κάποιον ἀνώνυμο συγγραφέα τοῦ 13ου αἰ. μ.Χ. γιὰ τὴν ἐξίσωση αχ³=cχ+κ, τὴν ὁποία ἔλυνε ὡς ἐξῆς:
χ³=cχ/α+κ/α, συνεπῶς
χ=c/(2α)+√[{(c/(2α)}²+κ/α].
Ὁ Pacioli τὸ 1494 μ.Χ. ἰσχυριζόταν ὅτι γιὰ τὶς τριτοβάθμιες ἐξισώσεις δὲν εἶναι δυνατὸν νὰ δοθεῖ γενικὴ λύση, καὶ ὁ Φιμπονάτσι ἔλυνε τριτοβάθμιες χρησιμοποιώντας μία μέθοδο, ἡ ὁποία εἶχε πολλὲς ὁμοιότητες μὲ τὸ σχῆμα τοῦ Horner[12]. Τελικὰ πρῶτος ὁ Cardano τὸ 1545, στὸ ἔργο του Artis magnae sive de reguli Algebraicis liber unus δημοσίευσε τὴ λύση τριτοβάθμιας ἐξίσωσης. Ἡ Ἄλγεβρα ἦταν ἀκόμα ρητορική καὶ χωρὶς σύμβολα. Ὁ Cardano στὸ ἔργο του περιέγραφε τὴν ἐξίσωση 6χ³-4χ²=34χ+24. Κατόπιν πρόσθετε καὶ στὰ δύο μέλη τὴν παράσταση 6χ³+20χ², ὁπότε ἡ ἐξίσωση διαμορφωνόταν ὡς ἑξῆς:
4χ²(3χ+4)=(2χ²+4χ+6)(3χ+4), καὶ μετὰ ἀπὸ πράξεις προέκυπτε ἡ λύση χ=3.
Ὁ Cardano ὅμως φαίνεται ὅτι γνώριζε ὅτι ὑπῆρχαν καὶ ἄλλες λύσεις[13]. Πρέπει νὰ ποῦμε ὅμως ὅτι τὴν ἀνωτέρω λύση εἶχε βρεῖ ὁ Tartaglia, ὁ ὁποῖος τὴν εἶχε ἐμπιστευθεῖ στὸν Cardano, καὶ αὐτὸς μὲ τὴ σειρά του πρόλαβε καὶ τὴ δημοσίευσε[14].
Στὴ γενικὴ λύση ὅμως τῆς τριτοβάθμιας καὶ τῆς τεταρτοβάθμιας ἐξίσωσης ἔφθασε τὸ 1615 ὁ Vietà[15], δίνοντας μία μεθοδολογία, ἡ ὁποία ἐφαρμόζεται μέχρι σήμερα.
Φαίνεται, ὅτι ὁ συγγραφέας τοῦ χειρογράφου μας, ἔχοντας ἐπίγνωση τῆς ἀδυναμίας του νὰ λύσει ἐξισώσεις ἀνωτέρου βαθμοῦ, δὲν τὶς χρησιμοποιεῖ σὲ κανένα ἀπὸ τὰ ἑπόμενα προβλήματα. Ἀντιθέτως, ἐπιδεικνύει ἐξαιρετικὴν ἄνεση στὴν ἐφαρμογὴ τῶν τύπων τῆς πρωτοβάθμιας καὶ τῆς δευτεροβάθμιας ἐξίσωσης.

[1] Smith, Hist. Math., τόμ. II, σελ. 382.
[2] Διοφ. Ἀριθμ., π.χ. πρόβλ. 6, σελ. 59. Ὁ Διόφαντος ἀπαιτοῦσε οἱ ρίζες νὰ εἶναι ὄχι μόνο θετικὲς ἀλλὰ καὶ ρητές. Βλ. Διοφ. Ἀριθμ., σελ. 172. Κ. Vogel, "Diophantus", σελ. 114. Heath, Hist. Gr. Math., τόμ. ΙΙ, σελ. 463-4.
[3] Ὁ ὅρος "census" ἢ "zensus" σημαίνει "διατίμηση φόρου ἢ πλούτου". Βλ. Smith, Hist. Math., τόμ. II, σελ. 427.
[4] Vogel, Fibonacci, σελ. 609. Ηøyrup, Sub-Sc. Math, σελ. 25.
[5] Σχετικὰ μὲ τὴ λύση ἐξισώσεων Α καὶ Β βαθμοῦ βλ. Adel Anbouba, Notes sur l’ Algèbre d’ Al-Hwarizmī, Pub. de l’ Univ. Libanaise, Beyroyth, 1968, σελ. 5-17.
[6] Smith, Hist. Math., τόμ. II, σελ. 427.
[7] ὅ. π., σελ. 442.
[8] Βλ. Διοφ. Ἀριθμ., προβλ. 17, σελ. 326. Βλ. ἐπίσης Heath, Hist. Gr. Math., τόμ. II, σελ. 465.
[9] Anbouba Adel, L’ Algèbre Al-Badī d’Al-Karagī, Publ. de l’ Univ. Libanaise, Beyrouth, 1964, σελ. 40.
[10] Ὁ Khayyam ἰσχυριζόταν, ὅτι ἡ ἐξίσωση χ³+qχ=pχ²+r μπορεῖ νὰ ἔχει τὸ πολὺ 2 ρίζες. Βλ. Youschkevitch, Κhayyam, σελ. 329.
Ὁ ἴδιος λύνει τὴν ἐξίσωση χ³+bχ²=b²c χρησιμοποιώντας κωνικὲς τομές. Δηλαδὴ θέτει χ²=by, y²=χ(c-χ) καὶ λύνει τὸ σύστημα. Βλ. Smith, Hist. Math., τόμ. II, σελ. 456.
[11] Smith, Hist. Math., τόμ. II, σελ. 457, 458.
[12] Τὸ σχῆμα τοῦ Horner ἦταν ἤδη γνωστὸ στοὺς Κινέζους καὶ στοὺς Ἄραβες. Βλ. Vogel, Fibonacci, σελ. 610.
[13] Βλ. M. Gliozzi, "Cardano Girolamo", DSB, τόμ. III, σελ. 64-67.
[14]A. Masotti, "Tartaglia Nicolo", DSB, τόμ.XIII, σελ. 258-262. Loria, Ἱστ. Μαθ., σελ. 12-27.

Λέγεται, ὅτι τὴν ἐξίσωση χ³+αχ+β=0, α>0, β<0>ἔλυσε (μὲ γενικὴ λύση) πρῶτος Scipione del Ferro (1465;-1526), χωρὶς ὅμως νὰ τὴ δημοσιεύσει. λύση, στὴν ὁποία κατέληξε καὶ Tartaglia ἦταν:

χ=₍₋β/2+√(β²/4+α³/27)₎+₍₋β/2-√(β²/4+α³/27)₎. Βλ. V. M. Tikhomirov, Ἱστορίες γιὰ μέγιστα καὶ ἐλάχιστα, ἐκδ. Κάτοπτρο, μετάφρ. Κ. Γαβρὰς-Γ. Κατσιλιέρης, Ἀθήνα 1999, σελ. 51.

[15] Smith, Hist. Math., τόμ. II, σελ. 465. Loria, Ἱστ. Μαθ., σελ. 82-93.